Protease-Dead Separase Is Dominant Negative in the C. elegans Embryo
نویسندگان
چکیده
Separase is a protease that promotes chromosome segregation at anaphase by cleaving cohesin. Several non-proteolytic functions of separase have been identified in other organisms. We created a transgenic C. elegans line that expresses protease-dead separase in embryos to further characterize separase function. We find that expression of protease-dead separase is dominant-negative in C. elegans embryos, not previously reported in other systems. The C. elegans embryo is an ideal system to study developmental processes in a genetically tractable system. However, a major limitation is the lack of an inducible gene expression system for the embryo. We have developed two methods that allow for the propagation of lines carrying dominant-negative transgenes and have applied them to characterize expression of protease-dead separase in embryos. Using these methods, we show that protease-dead separase causes embryo lethality, and that protease-dead separase cannot rescue separase mutants. These data suggest that protease-dead separase interferes with endogenous separase function, possibly by binding substrates and protecting them from cleavage.
منابع مشابه
A closed conformation of the Caenorhabditis elegans separase–securin complex
The protease separase plays a key role in sister chromatid disjunction and centriole disengagement. To maintain genomic stability, separase activity is strictly regulated by binding of an inhibitory protein, securin. Despite its central role in cell division, the separase and securin complex is poorly understood at the structural level. This is partly owing to the difficulty of generating a suf...
متن کاملSeparase Cleaves the N-Tail of the CENP-A Related Protein CPAR-1 at the Meiosis I Metaphase-Anaphase Transition in C. elegans
Centromeres are defined epigenetically in the majority of eukaryotes by the presence of chromatin containing the centromeric histone H3 variant CENP-A. Most species have a single gene encoding a centromeric histone variant whereas C. elegans has two: HCP-3 (also known as CeCENP-A) and CPAR-1. Prior RNAi replacement experiments showed that HCP-3 is the functionally dominant isoform, consistent w...
متن کاملA Role for Separase in the Regulation of RAB-11-Positive Vesicles at the Cleavage Furrow and Midbody
Cell division requires coordinated regulation of chromosome segregation and cytokinesis. Although much is known about the function of the protease separase in promoting sister chromosome separation, the role of separase during cytokinesis is unclear. We show that separase localizes to the ingressing furrow and midbody during cytokinesis in the C. elegans embryo. Loss of separase function during...
متن کاملRab6 is required for the exocytosis of cortical granules and the recruitment of separase to the granules during the oocyte-to-embryo transition in Caenorhabditis elegans.
Remodeling of the embryo surface after fertilization is mediated by the exocytosis of cortical granules derived from the Golgi complex. This process is essential for oocyte-to-embryo transition in many species. However, how the fertilization signal reaches the cortical granules for their timely exocytosis is largely unknown. In Caenorhabditis elegans, the recruitment of separase, a downstream e...
متن کاملMultiple Mechanisms Contribute to Centriole Separation in C. elegans
Centrosome function in cell division requires their duplication, once, and only once, per cell cycle. Underlying centrosome duplication are alternating cycles of centriole assembly and separation. Work in vertebrates has implicated the cysteine protease separase in anaphase-coupled centriole separation (or disengagement) and identified this as a key step in licensing another round of assembly. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014